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Abstract. This paper gives an analytic description of the nonlinear development of the 
modulational instability with the two-dimensional nonlinear (cubic) Schrodinger equation 
governing the evolution of a weakly nonlinear, deep-water gravity wavetrain and tries to 
shed some light on the previous numerical and analytical results on this problem. Toward 
this objective, we first develop a proper formulation of the method of multiple scales to 
describe the long-time behaviour of the linearly unstable modulation near the threshold 
for linear instability for the two-dimensional case and investigate whether the nonlinear 
development of this modulation indicates a quasi-periodic motion in the latter case. 

1. Introduction 

PoincarC’s famous theorem on recurrent motions in Hamiltonian systems states that 
in a bounded Hamiltonian system with a finite number of degrees of freedom, almost 
all initial phase points will evolve in time such that they will return to an arbitrarily 
small neighbourhood of the initial point after a finite time interval. At first sight this 
theorem would appear to rule out recurrent motions for continuum systems which (at 
least formally) possess an infinite number of degrees of freedom. Thyagaraja [l, 21 
exhibited, however, some examples of one-dimensional nonlinear wave systems which 
appear to have only a finite number of ‘effective’ degrees of freedom which interact 
nonlinearly and exchange energy perpetually with each other, and so exhibit recurrence 
of states. These results gave a new insight into the numerical investigations of Yuen 
and Fergusson [ 31 on the dynamical structure of nonlinearly saturated, spatially- 
periodic solutions of the one-dimensional cubic nonlinear Schrodinger equation: 

where Q0 is an arbitrary reference amplitude. Yuen and Fergusson [3] numerically 
evolved linearly unstable initial data. (The instability in question is the so-called 
side-band instability discovered by Benjamin and Feir [4].) The long-time behaviour 
of those solutions revealed that the energy sharing effectively occurred among a finite 
number of modes. Furthermore, the solution ‘reconstructed’ itself after appearing to 
show a tendency to ‘break up’ due to linear instability. The discovery of the failure to 
thermalize as well as the tendency to recur goes back to the early work of Fermi et a1 
[5] on the oscillations of an anharmonic lattice, and the long-time, periodic behaviour 
of a nonlinear system has become known as the Fermi-Pasta-Ulam recurrence 
phenomenon. Lake et al [ 6 ]  in a series of careful experiments, showed that recurrence 
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is a generic phenomenon in situations adequately described by the one-dimensional 
nonlinear Schrodinger equation. 

The essence of the recurrence phenomenon is that linearly unstable modes non- 
linearly evolve into a superperiodic state on a sufficiently long timescale. When this 
superperiodicity is common to all Fourier modes, the initial conditions will be repro- 
duced every once in a while. Janssen [7] and Rowlands [8] made an attempt to show 
analytically that the long-time behaviour of spatially periodic solutions of the one- 
dimensional nonlinear Schrodinger equation is periodic. This was based on the well 
known linear-stability result that a finite-amplitude uniform wavetrain is unstable to 
infinitesimal modulational perturbations with sufficiently long wavelengths while it is 
stable for perturbations with short wavelengths so that a threshold for instability exists. 
Near the threshold for instability, Janssen [7] and Rowlands [8] then obtained the 
long-time behaviour of the unstable modulation by means of the method of multiple 
scales, and tried to show that the nonlinear effects stabilize the linearly unstable 
modulation and produce a periodic motion. However, Janssen [7] and Rowlands [8] 
did not completely succeed with their objective because they did not formulate the 
method of multiple scales properly to treat the instability threshold region, and hence 
their analytic results could not be expressed in a very meaningful way. Infeld [9] gave 
a more general calculation in which the restriction to the vicinity of the instability 
threshold region was relaxed. However, Infeld [9] ignored the second and higher 
harmonics. 

The evolution of a weakly nonlinear, deep water gravity wavetrain subjected to a 
two-dimensional modulation is described by the following two-dimensional nonlinear 
Schrodinger equation [ 10, 111: 

This equation is obtained from the more common form, in which the last term is 
absent, via the substitution q5 = e-IK'@012t @. Yuen and Fergusson [12] and Martin and 
Yuen [ 131 obtained numerical solutions of this equation for spatially periodic boundary 
conditions and showed the existence again of the connection between the linear 
instability aspects and the long-time evolution of certain classes of solutions of this 
equation. They showed, in particular, that the long-time evolution of the linearly 
unstable evolution is composed of the growth and decay of all the harmonics of the 
initial perturbation that lie within the unstable region, each one alternately dominating 
the evolution. However, because of the negative transverse dispersion the instability 
region in the wavenumber space for this equation is unbounded [ 141, and consequently 
Martin and Yuen [13] found that the energy initially contained in low modes would 
leak to unstable arbitrarily higher harmonics. Thus, for long times, the energy sharing 
occurred among an arbitrarily high number of modes. An analytic explanation of this 
phenomenon was recently given by Shivamoggi and Mohapatra [ 151, who showed that 
this nonlinear system can be described as effectively possessing an arbitrarily high 
number of degrees of freedom so that the overall motion can at best be only quasi- 
recurrent. 

In this paper, we formulate the method of multiple scales properly to describe the 
long-time behaviour of spatially periodic solutions of the two-dimensional nonlinear 
(cubic) Schrodinger equation ( 2 ) .  This involves inserting in the solutions near the 
threshold for linear instability, an explicit detuning parameter ,y [16] i.e., K = 
~ , ( 1  +A2,y+O(A3)), A<< 1, corresponding to equation (7) in Janssen's [7] paper. (One 
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could then demonstrate, showing in an elegant way Janssen's [7] original objective, 
for the one-dimensional case, that the nonlinear effects stabilize the linearly unstable 
modulation and produce a periodic motion.) Since the threshold for linear instability 
in the two-dimensional case exhibits two distinct branches [ 141 we will construct 
solutions separately near each branch. The method of treatment for the two-dimensional 
case needs to be modified, however. For one thing, we will now have to perturb the 
wavenumbers instead of the nonlinearity parameter K .  Besides, we will have to write 
different types of expansions for the two branches of the linear instability threshold. 
We will investigate the nonlinear effects on a linearly unstable modulation near the 
threshold. Since one of the two branches of the linear instability threshold for the 
two-dimensional case reduces to the instability threshold of the one-dimensional case 
in the appropriate limit, the nonlinear evolution near this branch is one-dimension 
like. While the other instability-threshold branch is peculiar to the two-dimensional 
case so that the nonlinear evolution near this branch reflects features that are peculiar 
to the two-dimensional case. 

2. Modulational instability for the two-dimensional case 

In order to investigate the modulational instability of the wavetrain whose evolution 
is governed by equation ( 2 ) ,  we put 

(3) 

( 4 )  

4 = p' /2  e'" 

Pt + ( P U X ) ,  - ( P a y ) ,  = 0 

so that equation (2) gives 

In order to perform the linear stability analysis, we put 

where k, ,  k2 are the wavenumber components and w is the frequency of the modulation. 
Assuming that lpll<< Ipol, and keeping only the terms linear in p ,  and c,, we obtain 
from equations (4) and (9, 

Thus, if K > 0, w 2  is negative in the region of the k , ,  k2 plane bounded by the lines 
k, = i k2 and the hyperbolas k: - k: = 4 ~ p ,  (see figure 1) .  

We will now consider the nonlinear development of the initially linearly unstable 
modulation. For this purpose, we consider the initial-value problem for modulations 
with wavenumbers near the threshold for instability. For the two-dimensional modula- 
tion, the latter are given by the following branches 

u2 =:( k: - k:)( k: - k: - 4Kpo). (7)  

1. k: - k: = 4Kpo 
k ,  = * k2 

The first set of branches reduces to the instability threshold k , = * =  for the 
one-dimensional modulation, in the limit k2 + 0. The second set of branches is peculiar 
for the two-dimensional modulation and does not exist for the one-dimensional 
modulation. We will now construct solutions separately near each of the branches. 
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I k, = -k, 

Figure 1. Modulational instability thresholds for the two-dimensional case. 

3. Solution near the hyperbolic branches 

We look for a solution here of the following form: 

P ( X ,  YY t )  = PO+ & P I ( &  Y ,  7) + &*P2(XY Y ,  .) +. ' * 

U(X, Y ,  t )  = EUl(X, y ,  7) + E2U2(X, )', T )  +. . . (8) 
k:- k : = 4 p o ~  + E ' x + .  . . 

where E is a small parameter that characterizes the departure of k: - k: from the linear 
stability threshold value 4 p , ~ ,  and T = et  is a slow timescale characterizing slow time 
evolutions near the stability threshold. We have introduced an explicit detuning 
parameter x. 

Substituting (8) into equations (4) and ( 5 ) ,  we obtain the following systems of 
equations to various orders in E :  

where 

L = [ l  d2 0 

z(s-5) + K P 0  0 

and the function S,, depends on the solutions up to O(en-l). 
For O ( E ) ,  we obtain 

L( ;;) = 0 

the solution for which corresponds to the neutrally stable case of the linear problem: 

p1 = a( . )  e'(ktx+kzy'+CC U1 =a(.) k: - k: = 4poK ( 1 1 )  
where cc means complex conjugate. 

Note that equation (10) actually allows one to take for ul, 
i ( m k , x + n k 2 y )  + cc c1 =a(.) e 
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where mk,  = nk,. However, with the exception of the case m = n = 0, this infinite- 
dimensional null space leads only to a static case by eliminating the time dependence 
of a ( r ) .  (The latter situation arises in course of removing the secular terms in the 
O(e3) problem.) 

Using ( l l ) ,  to O ( s 2 ) ,  we obtain 

1 

from which 

Using (1 1) and (13), to O( e 3 ) ,  we obtain 

Removal of the secular terms in the first member of equation (14) requires 

1 d a  
K d.r 

la/’= constant. 

Let us take the constant above to be zero. Removal of the secular terms in the second 
member of equation (14), then, requires 

If we impose the following initial conditions, 

da  
d r  
_- r = O : a = A  - 0  

and take a to be real, we obtain from equation (16), 

where 
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Equation (18) shows that a is bounded and oscillates between A and 4 if p > 0 and 
oscillates between 0 and A if p < 0. This demonstrates the nonlinear saturation of the 
linearly unstable modulation (x < 0) near the hyperbolic branches of the linear instabil- 
ity threshold. Observe the elegance given to the argument by the detuning parameter 
x present in the above formulation. 

4. Solution near the linear branches 

We look for a solution here of the following form: 

P ( X ,  Y ,  t )  = P O +  E P I ( X ,  Y ,  T )  + E 2 P Z ( X ,  Y ,  7 )  +. . . 
c r ( X , y , t ) = E a , ( X , y , T ) + E 2 c r 2 ( X , Y , T ) +  . . .  
k : - k z = E X 1 + E 2 X 2 + . .  , 

where T =  E t .  

Substituting (19) into equations (4) and ( 5 ) ,  we obtain to O ( E ) :  

L( ;;) = 0 

where L is defined in equation (9). We obtain from equation (20), 

k: - k:=O. - C y ( 7 )  ei(k,x+kP)+CC P 1 = 0  1 -  

Using (21), to 0(.s2), we obtain 

Removal of the secular terms in the first member of equation (22) requires 

X I =  0. 

Using (23), we obtain from equation (22), 

Using (21), (23) and (24), we obtain, to O ( e 3 ) :  

Removal of the secular terms in equation (25) requires 

Equation (26) shows that the nonlinearities, to O ( E ~ ) ,  have no effect on the linearly 
unstable modulation near the linear branches of the instability threshold. It is quite 
likely that a nonlinear effect may show up  at O ( E * ) ,  but then it would be very weak. 
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5. Discussion 

In this paper, we have given an analytic description of the nonlinear development of 
the modulational instability with the two-dimensional nonlinear Schrodinger equation 
governing the evolution of a weakly nonlinear, deep-water gravity wavetrain. In order 
to accomplish this, we formulated the method of multiple scales in a proper way to 
describe the long-time behaviour of the linearly unstable modulation near the thresholds 
for linear instability. This involved writing different types of expansions for the two 
branches of the linear-instability threshold and introducing an explicit detuning para- 
meter. We then investigated the nonlinear development of this two-dimensional modu- 
lation and found that it was one-dimension-like near the hyperbolic branches of the 
threshold while the nonlinearities had a very weak effect, if any, on the evolution of 
the modulation near the linear branches of the threshold. Since the latter branches are 
peculiar to the two-dimensional modulation, the above result showing very weak, if 
any, nonlinear influence on the latter is unique to the two-dimensional case and hence 
appears to shed some light on the nonlinear development of a linearly unstable 
modulation into a quasi-periodic motion as indicated by the numerical results of Yuen 
and Ferguson [ 121 and Martin and Yuen [ 131 and on the occurrence of quasi-recurrent 
motions for the two-dimensional modulated gravity wavetrains as indicated by the 
analytical results of Shivamoggi and Mohapatra [ 151. 
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